B.A./B.Sc. Semester-V

MATHEMATICS
(Linear Algebra)

Paper-II

Time Allowed-3 Hours]
[Maximum Marks-50
Note :-Attempt any FIVE questions in all choosing at least TWO from each Section.

SECTION-A

I. (a) Define Ring. Give an example of :
(i) a commutative ring without unity
(ii) a non-commutative ring with unity.
(b) Show that the set of all positive rational numbers under the composition defined by $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{3}$ forms an infinite abelian group. 6,4
II. (a) Is R^{2} a subspace of R^{3} ? Justify.
(b) Prove that union of two subspaces W_{1} and W_{2} is a subspace of vector space $V(F)$ iff they are comparable.

4,6
III. (a) If S is any subset of a vector space $V(F)$, then show that S is a subspace if and only if $L(S)=S$.
(b) Find condition on a, b, c so that the vector $v=(a, b, c) \in R^{3}$ belongs to the space generated by $\mathbf{u}=(2,1,0), \mathbf{v}=(0,3,-4), \mathbf{w}=(1,-1,2)$.
IV. (a) If $\mathrm{V}(\mathrm{F})$ is a vector space then prove that the set S of non zero vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}} \in \mathrm{V}$ is linearly dependent if and only if some vector $\mathrm{v}_{\mathrm{m}} \in \mathrm{S}$, $2 \leq \mathrm{m} \leq \mathrm{n}$ can be expressed as a linear combination of its preceding vectors.
(b) Give examples of two different basis of $\mathrm{V}_{3}(\mathrm{R})$.
V. (a) Find basis and dimension of the subspace W generated by the vectors $(1,2,3,5),(2,3,5,8),(3,4,7,11)$, $(1,1,2,3)$ of R^{4}. Also extend to a basis of R^{4}.
(b) Let W be a subspace of a finite dimensional vector space $V(F)$. Then prove that :

$$
\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W
$$

SECTION-B
VI. (a) Give an example of a linear transformation $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{U}$ whose range and null space are identical.
(b) Verify rank-nullity theorem for $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+2 y, y-z, x+2 z)$. 5,5
VII. Let V and W be two finite dimensional vector spaces over field F and $\mathrm{L}(\mathrm{V}, \mathrm{W})$ be the vector space of all linear transformations from V to W . Prove that $\mathrm{L}(\mathrm{V}, \mathrm{W})$ is also finite dimensional and $\operatorname{dim} \mathrm{L}(\mathrm{V}, \mathrm{W})=\operatorname{dim} \mathrm{V} . \operatorname{dim} \mathrm{W}$.
VIII.(a) Show that linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $T\left(e_{1}\right)=e_{1}-e_{2}, T\left(e_{2}\right)=2 e_{2}+e_{3}$, $T\left(e_{3}\right)=e_{1}+e_{2}+e_{3}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a standard basis of R^{3}, is neither one-one nor onto.
(b) Give an example of a linear operator $T: R^{3} \rightarrow R^{3}$ such that $\mathrm{T} \neq 0, \mathrm{~T}^{2}=0$ but $\mathrm{T}^{3}=0 . \quad 5,5$
IX. (a) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator, where V is a finite dimensional vector space over field F . Suppose $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of $V(F)$. Prove that $[\mathrm{T} ; \mathrm{B}][\mathrm{v} ; \mathrm{B}]=[\mathrm{T}(\mathrm{v}) ; \mathrm{B}]$ for any vector $\mathrm{v} \in \mathrm{V}$.
(b) Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be the linear transformation defined by $T(x, y, z)=(2 x, 4 y, 5 z)$. Find matrix of T with respect to basis $\left(\frac{2}{3}, 00\right),\left(0, \frac{1}{2}, 0\right)$ and $\left(0,0, \frac{1}{4}\right)$ of R^{3}. 7,3
X. (a) Find linear mapping $T: R^{2} \rightarrow R^{3}$ determined by the matrix

$$
A=\left[\begin{array}{rr}
0 & 2 \\
1 & -1 \\
2 & 3
\end{array}\right]
$$

with respect to ordered basis $\mathrm{B}_{1}=\{(1,2),(0,3)\}$ and $\{(1,1,0),(0,1,1),(1,1,1)\}$ for R^{2} and R^{3} respectively.
(b) Let $\mathrm{B}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{B}_{2}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}$ be two ordered basis of $V(F)$. Show that the transition matrix from basis B_{1} to B_{2} is invertible.

